Abstract

Hepatocytes are parenchymal cells of the liver and engage multiple metabolic functions, including synthesis and secretion of proteins essential for systemic energy homeostasis. Primary hepatocytes isolated from the murine liver constitute a valuable biological tool to understand the functional properties or alterations occurring in the liver. Herein we describe a method for the isolation and culture of primary mouse hepatocytes by performing a two-step collagenase perfusion technique and discuss their utilization for investigating protein metabolism. The liver of an adult mouse is sequentially perfused with ethylene glycol-bis tetraacetic acid (EGTA) and collagenase, followed by the isolation of hepatocytes with the density gradient buffer. These isolated hepatocytes are viable on culture plates and maintain the majority of endowed characteristics of hepatocytes. These hepatocytes can be used for assessments of protein metabolism including nascent protein synthesis with non-radioactive reagents. We show that the isolated hepatocytes are readily controlled and comprise a higher quality and volume stability of protein synthesis linked to energy metabolism by utilizing the chemo-selective ligation reaction with a Tetramethylrhodamine (TAMRA) protein detection method and western blotting analyses. Therefore, this method is valuable for investigating hepatic nascent protein synthesis linked to energy homeostasis. The following protocol outlines the materials and methods for the isolation of high-quality primary mouse hepatocytes and detection of nascent protein synthesis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.