Abstract

The relationship between tRNA structure and function has been widely investigated by site-directed mutagenesis. This method has been a very useful tool to reveal the critical bases in tRNAs that are important for recognition and aminoacylation, but has been limited by the large number of possible base combinations in tRNA molecules. We have devised a new method that uses tRNA knockout cells for selection of functional tRNAs from a mutant tRNA gene library to overcome this limitation. To explore the mechanism of tRNA Ala recognition, the bases of the acceptor-stem region were randomized and active mutants were selected in a tRNA Ala knockout strain. Mutants of tRNA Ala having diverse sequence combinations in the acceptor-stem region and a broad range of functional activity to support knockout cell growth were isolated. The mutant tRNAs selected by the method included molecules containing novel base substitutions as well as extensively altered base combinations that would not be readily generated by rationally designed site-directed mutagenesis. Our results emphasize the importance of the acceptor stem as a structural unit in which some nucleotides may carry more weight than others, but in summation every nucleotide contributes to the interaction with the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call