Abstract

ABSTRACTBiological nitrogen fixation by the microorganisms in the gut of termites is one of the singularly important symbiotic processes, since termites invariably thrive on nitrogen poor diet. Two isolates of free living aerobic and facultative anaerobic N fixing bacteria were obtained from the guts of fungus cultivating termite, Macrotermes sp. Among the total bacterial isolates from termite gut, the per cents of N fixing aerobes viz., Azotobacter and Beijerinckia spp were 49% and 37% from the salivary gland while facultative N fixing anaerobe viz., Klebsiella and Clostridium contributed (51% and 93%). The free living aerobic bacteria were identified as Azotobacter spp (19 x 104 CFU mL‐1) and Beijerinckia (13.2 x 104 CFU mL‐1) from the salivary gland of the termite; interestingly, foregut, mid gut and hind gut registered a low population of these bacteria. The isolates of Azotobacter were smooth, glistening, vicid in nature, rods, gram negative and cyst forming. Isolates of Beijerinckia sp. produced copious slime, tenacious, rods, gram negative with no cyst formations. Both the isolates emitted green fluorescence and produced acid. Facultative N fixing anaerobes were harbored in the hind gut. The isolates were identified as Klebsiella (20 x 104 CFU mL‐1) and Clostridium pasteurianum 39.1 x 104 CFU mL‐1. Klebsiella were straight rods arranged singly or in pairs, non‐motile, gram negative, whereas Clostridium pasteurianum was viscoid, motile with terminal spores. A positive correlation was observed between the extractable polysaccharides of these isolates and soil aggregation. The aggregates formed by the isolates increased soil aeration, porosity, water holding capacity and helped in better plant growth. Thus, the gut microflora of termite, apart from harnessing nitrogen from the atmosphere, also helps improving soil fertility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.