Abstract
Lactobionic acid (LBA) is a specialty organic acid that is widely employed in the food, cosmetic, and pharmaceutical industries. In the present study, we screened new LBA-producing bacteria from the soil of a poultry farm. Among the 700 bacterial colonies, five that exhibited LBA-producing ability were successfully isolated. Phylogenetic analysis based on 16 S rRNA sequences identified strain 2–15 as an Acinetobacter sp., strains 3–13 and 3–15 as Pseudomonas spp., and strains 7–7 and 7–8 as Psychrobacter spp. The LBA-producing abilities of the five strains were compared in flask culture, whereupon Psychrobacter sp. 7–8 showed the highest LBA titer (203.7 g/L), LBA yield from lactose (97.3%), and LBA productivity (2.83 g/L/h). To our best knowledge, this is the first study showing that Acinetobacter and Psychrobacter spp. can produce LBA from lactose. Our results would help broaden the spectrum of workhorse bacteria available for the industrially important microbial production of LBA. In addition, we improved the LBA-production ability of the three isolated bacteria, namely Acinetobacter sp. 2–15, Pseudomonas spp. strains 3–13 and 3–15, by heterologously expressing quinoprotein glucose dehydrogenase from Pseudomonas taetrolens. In particular, the LBA-production ability of the recombinant Pseudomonas sp. 3–13 were highly improved that the LBA titer and productivity were 19.2- (205.6 vs. 10.7 g/L, respectively) and 17.8-fold (1.07 vs. 0.06 g/L/h, respectively) higher, respectively, than those of the wild-type strain. These values were almost identical to those of the wild-type Psychrobacter sp. 7–8, which showed the highest LBA productivity among the five isolated strains. This result demonstrated that the expression of lactose-oxidizing enzyme in LBA-producing microorganisms was highly effective to enhance their LBA-production ability. Our study presents a practical method to screen for efficient LBA-producing microorganisms and to improve their production ability by genetic engineering for industrial LBA production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.