Abstract

Decidualization is a progesterone-dependent differentiation process of endometrial stromal cells and is a prerequisite for successful embryo implantation. Although many efforts have been made to reveal the underlying mechanisms of decidualization, the exact signaling between the epithelial cells that are in contact with the embryo and the underlying stromal cells remains poorly understood. Therefore, studying decidualization in a way that takes both the epithelial and stromal cells into account could improve our knowledge about the molecular details of decidualization. For this purpose, in vivo models of artificial decidualization are physiologically the most relevant; however, manipulation of intercellular communication is limited. Currently, in vitro cultures of endometrial stromal cells are being used to investigate the modulation of decidualization by several signaling molecules. Conventionally, human or mouse endometrial stromal cells are used. However, the availability of human samples is very often limited. Furthermore, the use of murine tissues is accompanied with variety in the method of culturing. This study presents a validated and standardized method to obtain pure Endometrial Epithelial Cell (EEC) and Stromal Cell (ESC) cultures using adult intact mice treated with estrogen for three consecutive days. The protocol is optimized to improve the yield, viability, and purity of the cells and was further extended in order to study decidualization in a coculture of EEC and ESC. This model may be suitable to exploit the importance of both cell types in decidualization and to evaluate the contribution of significant signaling molecules secreted by EEC or ESC during the intercellular communication.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.