Abstract

Mitochondria carry out a variety of important processes in plants. Their major role is the synthesis of ATP through the coupling of a membrane potential to the transfer of electrons from NADH to O2 via the electron transport chain. The NADH is generated by the oxidation of organic acids via the tricarboxylic acid cycle. However, mitochondria also perform many important secondary functions such as synthesis of nucleotides, amino acids, lipids, and vitamins. Mitochondria contain their own genome and undertake transcription and translation by some unique mechanisms; they actively import proteins and metabolites from the cytosol, are involved in programmed cell death processes in plants, and respond to cellular stress conditions. To understand the extent and mechanisms of mitochondrial functions in plants and the way in which their functions are perceived by the nucleus requires detailed information about the protein components of these organelles. Isolation of mitochondria to identify their proteomes and the changes in these proteomes during development and environmental stresses is growing area of research. In this chapter we provide a useful method for the isolation of mitochondria from plant cell culture using a gentle method of cell disruption based on protoplasts isolation that provides relatively high mitochondrial yields.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.