Abstract
The association of microvillar microfilaments with the microvillar membrane actin-containing transmembrane complex of MAT-C1 13762 ascites tumor cell microvilli has been investigated by differential centrifugation, gel electrophoresis and electron microscopy of detergent extracts of the isolated microvilli. Several methods have been used to reduce breakdown and solubilization of the microfilament core actin during the detergent extractions for preparation of microvillar core microfilaments. Gel electrophoresis of differential centrifugation fractions demonstrated that over 70% of the total microvillus actin could be pelleted with microfilament cores at 10 000 g under extraction conditions which reduce filament breakdown. Transmission electron microscopy (TEM) of all of the core preparations showed arrays of microfilaments and small microfilament bundles. The major protein components of the microfilament cores, observed by sodium dodecyl sulfate (SDS) electrophoresis, were actin and α-actinin. Among the less prominent polypeptide components was a 58 000 Dalton polypeptide (58 K), previously identified as a member of the MAT-C1 transmembrane complex. This three-component complex contains, in addition to 58 K, actin associated directly and stably with a cell surface glycoprotein (Carraway, CAC, Jung, G & Carraway, K L, Proc. natl acad. sci. US 80 (1983) 430). [12] Evidence that the apparent association of complex with the microfilament core was not due simply to co-sedimentation was provided by myosin affinity precipitation. These results provide further evidence that the transmembrane complex is a site for the interaction of microfilaments with the microvillar plasma membrane.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.