Abstract

Cytosolic lipid droplets (LDs) are organelles which emulsify a variety of hydrophobic molecules in the aqueous cytoplasm of essentially all plant cells. Most familiar are the LDs from oilseeds or oleaginous fruits that primarily store triacylglycerols and serve a storage function. However, similar hydrophobic particles are found in cells of plant tissues that package terpenoids, sterol esters, wax esters, or other types of nonpolar lipids. The various hydrophobic lipids inside LDs are coated with a phospholipid monolayer, mostly derived from membrane phospholipids during their ontogeny. Various proteins have been identified to be associated with LDs, and these may be cell-type, tissue-type, or even species specific. While major LD proteins like oleosins have been known for decades, more recently a growing list of LD proteins has been identified, primarily by proteomics analyses of isolated LDs and confirmation of their localization by confocal microscopy. LDs, unlike other organelles, have a density less than that of water, and consequently can be isolated and enriched in cellular fractions by flotation centrifugation for composition studies. However, due to its deep coverage, modern proteomics approaches are also prone to identify contaminants, making control experiments necessary. Here, procedures for the isolation of LDs, and analysis of LD components are provided as well as methods to validate the LD localization of proteins.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call