Abstract

A method for lignin isolation from softwood based on complete dissolution in NaOH aqueous solution and liquid-liquid extraction was introduced. The structural features of milled alkali-soluble lignin (MAL) were comparatively analyzed with those of classical milled wood lignin (MWL) by means of alkaline nitrobenzene oxidation (NBO) and molecular weight, as well as Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectra analyses. The results showed that the yield of crude MAL (34.2%) was about twice as much as that of MWL (16.4%). The NBO product yields of MWL and MAL were quite similar. The weight-average molecular weight of MAL (10,400 g mol-1) was much higher than for MWL (6,970 g mol-1). Both MWL and MAL displayed similar FTIR, UV, 1H NMR, and 1H-13C HSQC NMR spectra. The total OH content of MAL (4.48 mmol g-1) was higher than that of MWL (3.89 mmol g-1). Compared with MWL, MAL showed similar structural characteristics but better isolation yield and higher molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call