Abstract
Moulds are the most common cheese spoilage organisms which can lead to economic loss as well as raising public health concerns due to the production of mycotoxins. In this study, 897 lactic acid bacteria (LAB) isolated from different herbs, fruits and vegetables were screened for their antifungal activity in an agar plate overlay assay. Thirty-six isolates had weak activity, 11 had moderate activity and 12 were confirmed as having strong activity. The strong antifungal isolates were obtained from a range of different sources but were all identified by 16S rDNA sequencing as being Lactobacillus plantarum. The antifungal spectra for these 12 isolates were determined against eight other moulds commonly associated with cheese spoilage and all isolates were found to possess inhibition against Penicillium solitum, Aspergillus versicolor and Cladosporium herbarum, but not against Penicillium roqueforti, Penicillium glabrum, Mucor circinelloides, Geotrichum candidum or Byssochlamys nivea. The absence of sodium acetate from MRS agar resulted in no inhibition of Penicilium commune, suggesting the synergistic effect of acetic acid with the antifungal LAB, similarly to that previously reported. To determine their potential as biopreservatives in cheese, LAB isolates were inoculated into cottage cheese prior to the addition of P. commune. All Lb. plantarum isolates were found to prevent the visible growth of P. commune on cottage cheese by between 14 and >25 days longer than cottage cheese that contained either no added LAB or LAB that did not have antifungal activity (Lactococcus lactis, Weissella soli, Leuconostoc inhae and Leuconostoc mesenteroides isolates). The results of this study shows that LAB isolated from various herbs, fruits and vegetables possess antifungal activity and have potential for use as biopreservatives in cheese.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.