Abstract
Tritium suicide was shown to be highly efficient method for isolating mutants defective in hypoxanthine incorporation in the Chinese hamster lung cell line V79. The tritium suicide procedure consisted of 3 kill cycles. Survivors of one kill cycle were used for the next kill cycle. The kill cycles involved incorporation of [ 3H]hypoxanthine for 5 or 10 min, followed by storage of 3H-labelled cells at −70°C for 4–10 days. 12 clones that survived the 3rd kill cycle were tested for incorporation of [ 3H]hypoxanthine and all were found to be defective. At least 6 of the clones have defective hypoxanthine phosphoribosyltransferase (HPRT) activity. One mutant, H19, chosen for further characterization, had HPRT with a 13-fold elevation in apparent K m for phosphoribosylpyrophosphate (PRPP). Thin-layer chromatography of cell extracts showed that this mutant was incapable of converting intracellular hypoxanthine to IMP or to other purine metabolites. In addition, H19 was resistant to 6-thioguanine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.