Abstract

In this work a highly acetylated-ethylenediamine-Novarose (HA-EDA-Novarose) gel was synthesized and used as a new agarose-based salt-promoted adsorption chromatography (SPAC) matrix to effectively isolate serum immunoglobulins without the need of denaturing conditions. Samples of human serum in 0.5 M Na 2SO 4, 10 mM 3-( N-morpholino)-propane-sulfonic acid (MOPS), pH 7.6 were applied to a chromatographic column packed with the SPAC gel. Immunoglobulins (Igs) with affinity for the HA-EDA ligands were specifically adsorbed to the matrix, non-bound serum proteins were readily removed by washing the column with the same feed solution buffer. Bound Igs were effectively and very gently eluted by simply removing the salt from the feed solution buffer. The elution buffer consisted thus of only 10 mM MOPS, at pH 7.6 and no salt. The salt-dependent adsorption capacity of this system was estimated to be 7.3 mg/ml with protein recovery of about 93%. Sodium dodecyl sulfate–polyacrylamide gel (SDS–PAGE) electrophoresis analysis, radial immunodiffusion and enzyme-linked immunosorbent assays showed that immunoglobulins G, M and A (IgG, IgM and IgA) were the main components present in the elution fraction. The new SPAC adsorbent was used to purify Igs from human serum and IgG and IgA from non-pure commercially available Igs preparations in a very gentle single step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.