Abstract
1. A method is described for the isolation of hexokinase from baker's yeast. The method is based mainly on fractionation with alcohol and results See PDF for Structure in a 30-fold increase in specific activity. The final product could be crystallized from ammonium sulfate without change in specific activity. 2. The enzyme catalyzes a transfer of phosphate from adenosinetriphosphate to glucose, fructose, or mannose, the relative rates with these three sugars being 1:1.4:0.3. 3. With glucose as substrate, the turnover number for the crystalline enzyme is 13,000 moles of substrate per 105 gm. of protein per minute at 30° and pH 7.5. The temperature coefficient (Q10°) between 0 and 30° is 1.9. 4. Magnesium ions are necessary for the activity, the dissociation constant for the Mg++ -protein complex being 2.6 x 10–3. Fluoride in concentrations as high as 0.125 M has no inhibitory effect on the enzyme when the Mg++ and orthophosphate concentrations are 6.5 x 10–3 M and 1 x 10–3 M, respectively. 5. The crystalline enzyme shows a loss in activity when highly diluted. This loss in activity can be prevented by diluting in the presence of small amounts of other proteins. Of the various protective proteins tested, insulin was the most effective, providing complete protection in a concentration of 6 micrograms per cc.; with serum albumin, a concentration of 60 micrograms per cc. was necessary. Thiol compounds (cysteine, glutathione) exerted no protective action. 6. The inactivation of the crystalline enzyme on incubation with trypsin can be prevented to a marked degree by the presence of glucose. The instability of crude preparations of yeast hexokinase may be attributed to the presence of proteolytic enzymes, since glucose or fructose has a remarkable protective effect on such preparations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.