Abstract
Selective inhibition of specific genes can be accomplished using genetic suppressor elements (GSEs) that encode antisense RNA, dominant negative mutant proteins, or other regulatory products. GSEs may correspond to partial sequences of target genes, usually identified by trial and error. We have used bacteriophage lambda as a model system to test a concept that biologically active GSEs may be generated by random DNA fragmentation and identified by expression selection. Fragments from eleven different regions of lambda genome, encoding specific peptides or antisense RNA sequences, rendered E. coli resistant to the phage. Analysis of these GSEs revealed some previously unknown functions of phage lambda, including suppression of the cellular lambda receptor by an 'accessory' gene of the phage. The random fragment selection strategy provides a general approach to the generation of efficient GSEs and elucidation of novel gene functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.