Abstract
The kinetic properties of the excitatory amino acid transporter EAAT2 were studied using rapid applications of L-glutamate to outside-out patches excised from transfected human embryonic kidney 293 cells. In the presence of the highly permeant anion SCN(-), pulses of glutamate rapidly activated transient anion channel currents mediated by the transporter. In the presence of the impermeant anion gluconate, glutamate pulses activated smaller currents predicted to result from stoichiometric flux of cotransported ions. Both anion and stoichiometric currents displayed similar kinetics, suggesting that anion channel gating and stoichiometric charge movements are linked to early transitions in the transport cycle. Transporter-mediated anion currents were recorded with ion and glutamate gradients favoring either unidirectional influx or exchange. Analysis of deactivation and recovery kinetics in these two conditions suggests that, after binding, translocation of substrate is more likely than unbinding under physiological conditions. The kinetic properties of EAAT2, the dominant glutamate transporter in brain astrocytes, distinguish it as an efficient sink for synaptically released glutamate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.