Abstract

A method is described for the isolation of filamentous phage-displayed human monoclonal antibodies directed at unpurifiable cell surface-expressed molecules. To optimize the capture of antigen-specific phage and minimize the binding of irrelevant phage antibodies, a simultaneous positive and negative selection strategy is employed. Cells bearing the antigen of interest are pre-coated with magnetic beads and diluted into an excess of unmodified antigen-negative cells. Following incubation of the cell admixture with a Fab/phage library, the antigen-positive cell population is retrieved using magnetically-activated cell sorting and antigen-specific Fab/phage are eluted and propagated in bacterial culture. Utilizing this protocol with magnetically-labeled Rh(D)-positive and excess unlabeled Rh(D)-negative human red blood cells and a Fab/phage library constructed from human peripheral blood lymphocytes, dozens of unique clinically-useful γ 1 κ and γ 1 λ anti-Rh(D) antibodies were isolated from a single alloimmunized individual. This cell-surface selection method is readily adaptable for use in other systems, such as for the identification of putative tumor-specific antigens and provides a rapid (<1 month), high-yield approach for isolating self-replicative antibody reagents directed at novel or conformationally-dependent cell-surface epitopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call