Abstract
Separation/purification of nuclei from cells is a critical process required for medical and biochemical research applications. Here, we report a flow-through microfluidic device for isolating cell nuclei by selectively digesting the cell membrane by using the concept of hydrodynamic filtration (HDF). When a cell suspension is continuously introduced into a microchannel (main channel) possessing multiple side channels, cells flow through the main channel, whereas the carrier medium of the cells is drained through the side channels. Introductions of a cell treatment solution containing a surfactant and a washing buffer enable the two-step exchange of the carrier-medium and the cell treatment by the surfactant for a short span of time. The precise control of the treatment time by changing the flow rate and/or the size of the microchannel enables the selective digestion of cell membranes, resulting in the isolation of cell nuclei after separation from membrane debris and cytoplasmic components according to size. We examined several surfactant molecules and demonstrated that Triton X-100 exhibited high efficiency regarding nucleus isolation for both adherent (HeLa) and nonadherent (JM) cells, with a recovery ratio of ~80 %. In addition, the isolation efficiency was evaluated by western blotting. The presented flow-through microfluidic cell-nucleus separator may be a useful tool for general biological applications, because of its simplicity in operation, high reproducibility, and accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.