Abstract

The brightness (perceived intensity) of a region of visual space depends on its luminance and on the luminance of nearby regions. This phenomenon is called brightness induction and includes both brightness contrast and assimilation. Historically, and on a purely descriptive level, brightness contrast refers to a directional shift in target brightness away from the brightness of an adjacent region while assimilation refers to a brightness shift toward that of an adjacent region. In order to understand mechanisms, it is important to differentiate the descriptive terms contrast and assimilation from the optical and/or neural processes, often similarly named, which cause the effects. Experiment 1 isolated the effect on target patch (64 cd/m2) matching luminance (brightness) of six surround-ring widths (0.1°-24.5°) varied over 11 surround-ring luminances (32-96 cd/m2). Using the same observers, Experiment 2 examined the effect of the identical surround-ring parameters on target patch matching luminance in the presence of a dark (0.0 cd/m2) and a bright (96 cd/m2) remote background. By differencing the results of Experiment 1 (the isolated effect of the surround-ring) from those of Experiment 2 (the combined effect of the surround-ring with the dark and bright remote background) we further isolated the effect of the remote background. The results reveal that surround-rings and remote backgrounds produce brightness contrast effects in the target patch that are of the same or opposite polarity depending on the luminance polarity of these regions relative to target patch luminance. The strength of brightness contrast from the surround-ring varied with surround-ring luminance and width. Brightness contrast (darkening) in the target from the bright remote background was relatively constant in magnitude across all surround-ring luminances and increased in magnitude with decreasing surround-ring width. Brightness contrast (brightening) from the isolated dark remote background also increased in magnitude with decreasing surround-ring width: however, despite some regional flattening of the functions due to the fixed luminance of the dark remote background, induction magnitude was much reduced in the presence of a surround-ring of greater luminance than the target patch indicating a non-linear interaction between the dark remote background and surround-ring luminance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call