Abstract

An efficient biosurfactant-producing native Pseudomonas aeruginosa RS29 has been isolated from crude oil contaminated soil. Isolation was followed by optimization of different factors to achieve maximum production of biosurfactant in terms of surface tension reduction (STR) and emulsification index (E24). The isolated strain produced highest biosurfactant in the presence of glycerol after 48 h of incubation at 37.5°C, with pH range of 7–8 and at salinity <0.8% (w/v). The extent of STR and the E24 of medium with different nitrogen sources were investigated and found to be maximal for sodium nitrate (26.3 mN/m, E24 = 80%) and potassium nitrate (26.4 mN/m, E24 = 79%). The production of biomass by the designated strain was found to be maximal in ammonium-nitrate-containing medium as compared to the other nitrogen sources. A kinetic study revealed that biosurfactant production is positively correlated with growth of P. aeruginosa, and highest STR was achieved (27.0 mN/m) after 44 h of growth. The biosurfactant was produced as a primary metabolite and 6 g/L crude biosurfactant was extracted by chloroform:methanol (2:1). The critical micelle concentration of the biosurfactant was 90 mg/L. The absorption bands of the FTIR spectra confirmed the rhamnolipid nature of the biosurfactant. The biosurfactant was thermostable (up to 121°C for 15 min) and could withstand a wide range of pH (2–10) and NaCl concentration (2%–10% w/v). The extracted biosurfactant had good foaming and emulsifying activities and was of satisfactory quality in terms of stability (temperature, pH and salinity) and foaming activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.