Abstract
ABSTRACT Exploring plant growth-promoting (PGP) bacterial activity of microbial components aggregated by wastewater treatment can reduce dependence on fossil fuel-derived fertilisers. This study describes the isolation and identification of bacteria from microalgae-bacteria flocs (MaB-flocs) generated in high-rate algal oxidation ponds (HRAOP) of an integrated algal pond system (IAPS) remediating municipal wastewater. Amplified 16S rRNA gene sequence analysis determined the molecular identity of the individual strains. Genetic relatedness to known PGP rhizobacteria in the NCBI GenBank database was by metagenomics. Isolated strains were screened for the production of indoles (measured as indole-3-acetic acid; IAA) and an ability to mineralise NH 4 + , PO 4 3 − , and K + . Of the twelve bacterial strains isolated from HRAOP MaB-flocs, four produced indoles, nine mineralised NH 4 + , seven solubilised P, and one K. Potential of isolated strains for PGP activity according to one-way ANOVA on ranks was: ECCN 7b > ECCN 4b > ECCN 6b > ECCN 3b = ECCN 10b > ECCN 1b = ECCN 5b > ECCN 8b > ECCN 2b > ECCN 12b > ECCN 9b = ECCN 11b. Further study revealed that cell-free filtrate from indole-producing cultures of Aeromonas strain ECCN 4b, Enterobacter strain ECCN 7b, and Arthrobacter strain ECCN 6b promoted mung bean adventitious root formation suggestive of the presence of auxin-like biological activity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.