Abstract

Arginine kinases (AK) in invertebrates play the same role as creatine kinases in vertebrates. Both proteins are important for energy metabolism, and previous studies on AK focused on this attribute. In this study, the arginine kinase gene was isolated from Apis cerana cerana and was named AccAK. A 5'-flanking region was also cloned and shown to contain abundant putative binding sites for transcription factors related to development and response to adverse stress. We imitated several abiotic and biotic stresses suffered by A. cerana cerana during their life, including heavy metals, pesticides, herbicides, heat, cold, oxidants, antioxidants, ecdysone, and Ascosphaera apis and then studied the expression patterns of AccAK after these treatments. AccAK was upregulated under all conditions, and, in some conditions, this response was very pronounced. Western blot and AccAK enzyme activity assays confirmed the results. In addition, a disc diffusion assay showed that overexpression of AccAK reduced the resistance of Escherichia coli cells to multiple adverse stresses. Taken together, our results indicated that AccAK may be involved of great significance in response to adverse abiotic and biotic stresses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.