Abstract
This exploratory synthesis investigation was undertaken to determine the viability of replacing a single carbon vertex with another p-block element in a highly strained tetrahedrane molecule. Phosphorus was selected for this purpose because the stable molecular form of elemental phosphorus is tetrahedral. Our synthetic strategy was to generate an unsaturated phosphorus center bonded to a substituted cyclopropenyl group, a situation that could lead to closure to provide the desired phosphatetrahedrane framework. This was accomplished by dehydrofluorination of the in situ generated fluorophosphine H(F)P(C t Bu)3. Tri-tert-butyl phosphatetrahedrane, P(C t Bu)3, was then isolated in 19% yield as a low-melting, volatile, colorless solid and characterized spectroscopically and by a single-crystal x-ray diffraction study, confirming the tetrahedral nature of the molecule's PC3 core. The molecule exhibits unexpected thermal stability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.