Abstract

The reactivity of phosphaalkynes, the isolobal and isoelectronic congeners to alkynes, with metal alkylidyne complexes is explored in this work. Treating the tungsten alkylidyne [t BuOCO]W≡Ct Bu(THF)2 (1) with phosphaalkyne (10) results in the formation of [O2 C(t BuC=)W{η2 -(P,C)-P≡C-Ad}(THF)] (13-t BuTHF ) and [O2 C(AdC=)W{η2 -(P,C)-P≡C-t Bu}(THF)] (13-AdTHF ); derived from the formal reductive migratory insertion of the alkylidyne moiety into a W-Carene bond. Analogous to alkyne metathesis, a stable phosphametallacyclobutadiene complex [t BuOCO]W[κ2 -C(t Bu)PC(Ad)] (14) forms upon loss of THF from the coordination sphere of either 13-t BuTHF or 13-AdTHF . Remarkably, the C-C bonds reversibly form/cleave with the addition or removal of THF from the coordination sphere of the formal tungsten(VI) metal center, permitting unprecedented control over the transformation of a tetraanionic pincer to a trianionic pincer and back. Computational analysis offers thermodynamic and electronic reasoning for the reversible equilibrium between 13-t Bu/AdTHF and 14.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call