Abstract

We have isolated a 5.4-kilobase fragment of Bacillus subtilis DNA that confers the ability to replicate upon a nonreplicative plasmid. The B. subtilis 168 EcoRI fragment was ligated into the chimeric plasmid pCs540, which contains a chloramphenicol resistance determinant from the Staphylococcus aureus plasmid pC194 and an HpaII fragment from the Escherichia coli plasmid, pSC101. A recE B. subtilis derivative, strain BD224, is capable of maintaining this DNA as an autonomously replicating plasmid. In rec+ recipients, chloramphenicol-resistant transformants do not contain free plasmid. The plasmid is integrated as demonstrated by alterations in the pattern of chromosomal restriction enzyme fragments to which the plasmid hybridizes. The site of plasmid integration was mapped by PBS1-mediated transduction to the metC-PBSX region. A strain was a deletion in the region of defective bacteriophage PBSX differs in the hybridization profile obtained by probing EcoRI digests with this cloned fragment. This same deletion mutant, though proficient in normal recombinational pathways, permits autonomous replication of the plasmid apparently owing to the lack of an homologous chromosomal region with which to recombine. We believe that, like E. coli. B. subtilis contains at least one DNA fragment capable of autonomous replication when liberated from its normally integrated chromosomal site and that this cloned DNA fragment comes from the region of defective bacteriophage PBSX.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call