Abstract

After water imbibition, the outer layer seed coat of shaddock (Citrus grandis Osbeck) produces transparent gel-like mucilage (MSS), but its characteristics have never been studied before. This study aimed to assess the physico-chemical and functional properties of MSS. Extractions of MSS with deionized water at room temperature yielded about 3.5% based on the dry weight of seed. The major components were neutral sugars and uronic acids in the amounts of 33.5% and 49.6%, respectively. The acidic nature of MSS was confirmed by ruthenium red staining. Its water holding capacity and viscosity were 44.53 g•g-1 DW and 1660 cP at 10 g/L, respectively. MSS showed a weak quenching activity against DPPH radical, and moderate ferrous ion-chelating and superoxide anion radical scavenging activities, with IC50 value of 1.5 g/L and 1.1 g/L, respectively. A methyl thiazolyl tetrazolium (MTT) assay demonstrated that MSS significantly stimulated the viability of mouse skin fibroblasts (NIH/3T3) at 5 - 300 mg/L. These results impart the potential usefulness of the MSS to food, cosmetics and other applications.

Highlights

  • Many angiosperms, including Brassicaceae, Solanaceae, Linaceae, and Plantaginaceae, among others, produce a pectinaceous mucilage layer in their outer seed coat, known as myxospermy [1] [2]

  • Our preliminary study indicated that the outer seed coat of shaddock contained a high amount of transparent gel-like mucilage (MSS) and had never been studied before

  • The seeds were removed from ripe shaddock fruits (Citrus grandis Osbeck) that were purchased from a local market in the northern Taiwan

Read more

Summary

Introduction

Many angiosperms, including Brassicaceae, Solanaceae, Linaceae, and Plantaginaceae, among others, produce a pectinaceous mucilage layer in their outer seed coat, known as myxospermy [1] [2]. The objective of this paper was to characterize MSS with respect to its physicochemical properties such as the viscosity, water holding capacity, antioxidative potency in vitro and cytotoxicity against the mouse embryo fibroblast (NIH 3T3) cells. Such information contributes toward the sustainable reuse of agricultural wastes and imparts the potential usefulness of MSS to various applications

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.