Abstract

Gene 1 product (gp1) of Bacillus subtilis phage psi29 is known to promote DNA replication of the phage. Although its role in the DNA replication is not clear, gp1 is reported to exhibit multiple characteristics, including RNA binding, cell membrane localization, and self-association. To investigate these characteristics, we undertook the isolation of a series of missense mutants of gene 1 bearing substitutions at various regions. During cloning of gene 1, we found that its expression severely inhibited the growth of its host Escherichia coli cells. In this study, we utilized this growth-inhibition phenomenon to screen a random library muta-genized by error-prone PCR, expecting that mutants which could not inhibit cell growth would be affected in the authentic functions of gp1. Using this approach, we obtained 31 different mutants bearing single amino acid substitutions at 26 positions along the entire length of gp1. As a preliminary analysis of these mutants, we compared the deduced amino acid sequences of gp1s from psi29 and its related phages PZA, B103 and M2. Alignment of these sequences revealed three conserved regions, i.e. a hydrophobic region near the carboxyl terminus (assumed to be involved in the membrane localization and self-association of gp1), coiled-coil motif (essential for self-association), and a region of unknown function near the amino terminus. Interestingly, many of the substitutions in the isolated mutants occurred at strongly conserved residues in these regions and affected characteristic features of the regions (e.g. hydrophobicity of the hydrophobic region). These substitutions are expected to affect authentic functions of gp1, and the mutants will be useful for studies of the structure and functions of gp1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.