Abstract

An unnamed sporeforming microorganism, termed Clostridium sp. strain S2, possessing bile salt sulfatase activity was isolated from rat intestinal microflora. The microorganism was a strictly anaerobic, nonmotile, gram-negative, asaccharolytic, sporeforming rod requiring CO2, vitamin K, and taurine; the guanine-plus-cytosine content of the DNA was 40.8 mol% (Tm), and the strain was tentatively classified as an atypical Clostridium species. Sulfatase activity was specific for 3 alpha-sulfate esters of 5 alpha- and 5 beta-bile salts, leaving the 3 beta-, 7 alpha-, and 12 alpha-sulfates unchanged. Strain S2 also deconjugated tauro- and glyco-conjugated bile salts and partially reduced into the corresponding 6 alpha-hydroxy bile salts. By these reactions, alpha-muricholate and beta-muricholate were more than 80% converted into hyocholate and omega-muricholate, respectively. In addition, strain S2 produced 12 alpha-hydroxysteroid dehydrogenase converting deoxycholate into 3 alpha-hydroxy-12-oxo-5 beta-cholanoate. When strain S2 was associated with gnotobiotic rats, the fecal bile salts were more than 90% desulfated and the fecal excretion of allochenodeoxycholate was five times lower than in control rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.