Abstract

A suspension of cortical tissue fragments prepared by collagenase digestion of renal cortex obtained from fed and chronically acidotic (NH4Cl) rats was separated into four bands on a Percoll density gradient. By microscopic examination, vital staining with trypan blue, and histologic staining technique (periodic acid-Schiff) the F4 band was shown to contain only (greater than 98%) proximal tubules, whereas the F1 band was significantly enriched (70%) with distal tubules contaminated by glomeruli and short segments of proximal tubules. Intra/extracellular ratios for PAH of 15 were measured in the F4 band and of 2 in F1 band. ATP was 1.4 and 2.8 mumol/g in the F4 and F1 bands, respectively, and was stable for at least 60 min. The proximal F4 band was shown to be gluconeogenic (L-glutamine or L-lactate 2.5 mM as substrate) and to adapt to metabolic acidosis. The distal F1 band was shown to be glycolytic (glucose 2.5 mM) with no changes with acid-base status. All fractions were shown to metabolize glutamine, but the metabolic fate of this amino acid was different in proximal and distal structures. A F4/F1 activity ratio for the proximal cytoplasmic phosphoenolpyruvate carboxykinase enzyme of 2.6 and 4.3 was observed in normal and acidotic rats, respectively. In contrast, a F4/F1 ratio of 0.13 and 0.22 was observed for the distal cytoplasmic hexokinase enzyme. This preparation, therefore, allows the metabolism of a homogeneous population of proximal tubular fragments to be studied and can be used to obtain information on enzyme location within the nephron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.