Abstract
Polyurethane diol (PUR-diol), a synthetic polymer, is widely used as a modifier for water-soluble resins and emulsions in wood appliances and auto coatings. Non-biodegradability of polyurethanes (PUR) and PUR-based materials poses a threat to environment that has led scientists to isolate microbes capable of degrading PUR. However, the bio-degradation of PUR-diol has not yet been reported. In this study, we report isolation of a soil bacterium that can survive using PUR-diol as sole carbon source. PUR-diol degradation by the organism was confirmed by thin layer chromatographic analysis of the conditioned medium obtained after the growth wherein a significant reduction of PUR-diol was observed compared to non-inoculated medium. To quantify the PUR-diol degradation, a sensitive assay based on High Performance Thin Layer Chromatography has been developed that showed 32% degradation of PUR-diol by the organism in 10 days. Degradation kinetics showed the maximal depletion of PUR-diol during logarithmic growth of the organism indicating a direct relation between the growth and PUR-diol degradation. Mutagenic study and GC-MS analysis revealed that esterase activity is involved in this degradation event. The ribotyping and metabolic fingerprinting analysis showed that this organism is a strain of Pseudomonous aeruginosa (P. aeruginosa). It has also been observed that this strain is able to degrade Impranil DLN™, a variety of commercially available PUR. Therefore this study identifies a new bacterium from soil that has the potential to reduce PUR-related waste burden and adds a new facet to diverse functional activities of P. aeruginosa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.