Abstract
ABSTRACTLeucine-rich repeat receptor-like kinase protein (LRR-RLK) is involved in a wide range of biological pathways. So far, the function of LRR-RLK in the growth, developmental processes and various external stimuli has still not been clearly elucidated in rice (Oryza sativa L.). To understand the mechanism(s) underlying stress response and to discover novel stress-tolerance genes in rice, we analysed a global genome expression profiling of the indica cultivar Pei'ai 64S subjected to cold, drought or heat stresses. Expression profiles were obtained for leaf and panicle tissues at seedling, booting and heading stages from plants under no stress, or cold, drought or heat stress, using the GeneChip Rice Genome Array (Affymetrix) representing 51279 transcripts from japonica and indica rice. We identified a gene, OsLRR2 (Oryza sativa L. leucine-rich repeat receptor-like kinase 2, GenBank accession: EAZ02952.1), which was highly up-regulated under cold and drought stress. In order to study its function in stress tolerance, we cloned the cDNA of the gene through amplification by reverse-transcription polymerase chain reaction. Sequence analysis showed that the cDNA encodes a protein of 375 amino-acid residues with molecular weight of ≈40.62 kD and pI of ≈5.75. The sequence databases search found that the open reading frame of OsLRR2 contained a leucine-rich repeats domain. Analysis of the putative promoter region for candidate cis-regulatory elements identified five matches to cis-elements related to stress responses, suggesting that OsLRR2 could be considered a new candidate gene involved in stress tolerance in rice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.