Abstract

Utilizing a cyclic (alkyl)(amino)carbene (CAAC) as a ligand, neutral CAAC-stabilized radicals containing a boryl functionality could be prepared by reduction of the corresponding haloborane adducts. The radical species with a duryl substituent was fully characterized by single-crystal X-ray structural analysis, EPR spectroscopy, and DFT calculations. Compared to known neutral boryl radicals, the isolated radical species showed larger spin density on the boron atom. Furthermore, the compound that was isolated is extraordinarily stable to high temperatures under inert conditions, both in solution and in the solid state. Electrochemical investigations of the radical suggest the possibility to generate a stable formal boryl anion species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.