Abstract

Malignant central nervous system (CNS) tumors, such as glioblastoma multiforme, invade the brain and disrupt normal tissue architecture, making complete surgical removal virtually impossible. Here, we have developed and optimized a purification strategy to isolate and identify natural inhibitors of glioma cell invasion in a three-dimensional collagen type I matrix. Inter alpha-trypsin inhibitor heavy chain 2 (ITI H2) was identified from the most inhibitory fractions and its presence was confirmed both as a single protein and in a bikunin-bound form. Stable overexpression in U251 glioma cells validated ITI H2's strong inhibition of human glioma cell invasion together with significant inhibition of cell proliferation and promotion of cell-cell adhesion. Analysis of primary human brain tumors showed significantly higher levels of ITI H2 in normal brain and low-grade tumors compared with high-grade gliomas, indicating an inverse correlation with malignancy. The phosphatidylinositol 3-kinase/Akt signaling cascade seemed to be one of the pathways involved in the effect of ITI H2 on U251 cells. These findings suggest that reduction of ITI H2 expression correlates with brain tumor progression and that targeting factors responsible for its loss or restoring the ITI supply exogenously may serve as potential therapeutic strategies for a variety of CNS tumors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.