Abstract

Despite the widespread use of N,N,-diethyl-3-methylbenzamide (deet) in insect repellent products, nothing is known about the molecular basis for the repellency of deet, we initiated a molecular genetics program to elucidate the molecular mechanism of deet repellency in Drosophila melanogaster (Meigen). Deet repellency was apparently due to airborne vapors, as wild type flies were repelled by a deet-treated surface in the absence of physical contact and in the dark. A mutant was isolated using chemical mutagenesis and at choice assay. In a choice assay, mutant flies entered 82 +/- 1% of deet-containing tubes, whereas wild type flies entered only 6 +/- 2% of deet-containing tubes. The mutant was repelled by other repellents, benzaldehyde and citronellal. The mutation was recessive and located on the X chromosome.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.