Abstract

SPARC (Secreted protein, acidic, rich in cysteine) is an extracellular matrix-associated and anti-adhesive glycoprotein extensively studied in vertebrates. Its presence among invertebrates has been reported in nematodes and flies. We cloned a cDNA containing a complete open reading frame for SPARC from the brine shrimp, Artemiafranciscana. The amino acid sequence identity between the Artemia and the fly SPARCs was 55%, whereas that of the Artemia and the nematode proteins was 45%. Artemia and vertebrates exhibited a sequence identity of 30% in the predicted aa sequences. The SPARC consisted of four domains commonly found among reported SPARCs. The protein comprised 291 amino acids, having a signal peptide, a follistatin-like domain, one N-glycosylation site and one calcium-binding EF-hand motif. Fourteen cysteine residues conserved among all the secreted forms of SPARCs were present in the Artemia SPARC, and four extra cysteine residues were also found in it. The extra residues were conserved among SPARCs of the arthropods and the nematode. Phylogenetic analyses showed that the sequences of SPARCs were grouped into those of vertebrates and invertebrates. Though the structural organization of SPARC was conserved among all the species studied, SPARC within a group was highly conserved within that group, but divergent between the two. Northern blots revealed the presence of a 1.1 kb mRNA, which was faintly expressed in embryos and considerably detected in prenauplii and nauplii. The isolation of a SPARC cDNA from Artemiafranciscana provides intriguing features of the divergent protein, SPARC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call