Abstract
Thiabendazole (TBZ) is a fungicide used in fruit-packaging plants. Its application leads to the production of wastewaters requiring detoxification. In the absence of efficient treatment methods, biological depuration of these effluents could be a viable alternative. However, nothing is known regarding the microbial degradation of the recalcitrant and toxic to aquatics TBZ. We report the isolation, via enrichment cultures from a polluted soil, of the first bacterial consortium able to rapidly degrade TBZ and use it as a carbon source. Repeated efforts using various culture-dependent approaches failed to isolate TBZ-degrading bacteria in axenic cultures. Denaturating gradient gel electrophoresis (DGGE) and cloning showed that the consortium was composed of α-, β- and γ-Proteobacteria. Culture-independent methods including antibiotics-driven selection with DNA/RNA-DGGE, q-PCR and stable isotope probing (SIP)-DGGE identified a Sphingomonas phylotype (B13) as the key degrading member. Cross-feeding studies with structurally related chemicals showed that ring substituents of the benzimidazole moiety (thiazole or furan rings) favoured the cleavage of the imidazole moiety. LC-MS/MS analysis verified that TBZ degradation proceeds via cleavage of the imidazole moiety releasing thiazole-4-carboxamidine, which was not further transformed, and the benzoyl moiety, possibly as catechol, which was eventually consumed by the bacterial consortium as suggested by SIP-DGGE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.