Abstract

Nitrogen (N2) fixation is the process by which N2 gas is converted to biologically reactive ammonia, and is a cellular capability widely distributed amongst prokaryotes. This process is essential for the input of new, reactive N in a variety of environments. Heterotrophic bacterial N fixers residing in estuarine sediments have only recently been acknowledged as important contributors to the overall N budget of these ecosystems and many specifics about their role in estuarine N cycling remain unknown, partly due to a lack of knowledge about their autecology and a lack of cultivated representatives. Nitrogenase reductase (nifH) gene composition and prevalence in Narragansett Bay sediments has revealed that two distinct phylogenetic groups dominate N-fixation. Analysis of nifH transcripts has revealed one active group to be the Desulfovibrionaceae, belonging to the Deltaproteobacteria. We see nifH expression from this group across sampling sites and times, despite the fact that Narragansett Bay sediments are replete with combined N, which is thought to inhibit N fixation in the environment. Here were present the genomic and physiological data in relation to N2 fixation by two heterotrophic members of the Desulfovibrionaceae, isolated from sediments of the Narragansett Bay estuary in 2010 and 2011, respectively: Desulfovibrio sp. NAR1 and Desulfovibrio sp. NAR2.To elucidate how nitrogenase activity in these organisms responds to the presence of different sources of combined N, and to link observed physiology with genomic potential (i.e. gene content), we performed a two-part study that coupled high-throughput genome sequencing and analysis with physiological investigations of growth on different N sources with N fixation rate measurements. The genomes of the two diazotrophic Narragansett Bay Desulfovibrio isolates (NAR1 and NAR2) were sequenced using a high throughput platform, subsequently assembled, annotated, and investigated for genes related to N fixation and overall N metabolism which were then compared across 34 additional Desulfovibrio genomes which were publicly available. To link findings at the molecular level with observations at the physiological level, N fixation rates were measured using the acetylene reduction assay (ARA) under conditions free of reactive N, and under the following combined N conditions: 12 mM urea, 12 mM NO3-, and 12 mM NH3. Both isolates can sustain growth by N2 fixation in the absence of biologically available N and our data indicate that nitrogenase activity is completely inhibited by the presence of ammonia, yet uninhibited by nitrate and urea, which are other forms of combined N found in Narragansett Bay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.