Abstract
The poultry industry is facing continuous challenges with regard to increased feed costs and loss due to infectious disease. To overcome this challenge, several antibiotics have been used along with chicken feeds to promote growth. Nevertheless, the use of antibiotics as growth promoter has been banned in many countries, due to the concerns associated with potential risks of emerging and horizontal transfer of multidrug resistant genes to bacteria in animal tissues. The objective of this study was to identify and characterize potential probiotic bacteria strains from the gastrointestinal tract of free-range locally selected chickens. The bacterial isolates were screened, purified and characterized based on morphological, biochemical and molecular characteristics from 12 well adopted free-range healthy young chickens. Low pH and bile salt tolerance, antagonistic activity, antibiotic activity, hemolysis activity, adhesion to the chicken intestine and carbohydrate fermentation tests was conducted to identify potential probiotic bacteria. Twelve bacterial isolates were screened based on their ability for their tolerance to low pH and bile salt. The isolates were identified by using 16S rRNA gene partial sequencing method. All screened isolates showed great survival percentage at low pH, i.e. (89.2±0.75 to 97.1±0.64) survived at 3hrs and (83.6±0.75 to 95.2±0.63) at 6hrs challenge at pH2. Isolate GCM112 was the least tolerant strain in 6.0% salt concentration at 12 and 24hrs exposure time (82.1±1.28 and 79.9±1.96%) respectively. The result revealed no strain tests in this study exhibited α- and β-hemolytic activity when cultured in sheep blood agar. Most isolated strains showed best growth at 37°C temperature and up to 4% NaCl concentration. Based on the reported result from in vitro data, GCH212 and GCM412 isolates were recognized as best potential probiotic bacteria for chicken against pathogens but further studies are needed on in vivo assessment on the health benefits in the real life situation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.