Abstract
Lignin is an aromatic heteropolymer forming a physical barrier and it is a big challenge in biomass utilization. This paper first investigated lignin-degradation bacteria from rotten wood in Qinling Mountain. Nineteen potential strains were selected and ligninolytic enzyme activities were determined over 84h. Strains that had higher enzyme activities were selected. Further, the biodegradation of wheat straw lignin and alkali lignin was evaluated indicating that Burkholderia sp. H1 had the highest capability. It was confirmed by gel permeation chromatography and field emission scanning electron microscope that alkali lignin was depolymerized into small fragments. The degraded products were analysed using gas chromatography-mass spectrometry. The total ion chromatograph of products treated for 7days showed the formation of aromatic compounds, an important intermediate from lignin degradation. Interestingly, they disappeared in 15days while the aldehyde and ester compounds increased. The results suggest that the lignin-degrading bacteria are abundant in rotten wood and strain H1 has high potential to break down lignin. The diversity of lignin-degrading bacteria in Qinling Mountain is revealed. The study of Burkholderia sp. H1 expands the range of bacteria for lignin degradation and provides novel bacteria for application to lignocellulosic biomass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Microbiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.