Abstract
Seawater reverse osmosis (SWRO) is a commonly used desalination technique owing to its lesser environmental and economic impacts as compared to thermal desalination techniques. Antiscalants are used in SWRO to reduce membrane scaling caused by the supersaturation of salts present in feed water. However, to remain effective in reducing membrane scaling, antiscalants should be highly stable and resistant to biological degradation by seawater microorganisms. In this research, several bacteria from Qatar's seawater were isolated and screened for their ability to use antiscalants as a carbon and energy source. The biodiversity of antiscalant degrading seawater bacteria was demonstrated through combining the techniques of MALDI-TOF MS and principle component analysis. It was found that the bacteria isolated from Qatar's seawater such as H. aquamarina, H. elongata, P. fragi, P. stutzeri and others can degrade antiscalants and use them as a carbon and energy source. It was observed that the growth rates varied based on the type of antiscalant and the bacteria used. Among the tested strains, H. aquamarina, which is also known for its potential to cause biofouling, demonstrated the highest growth rates in antiscalants media. Thus, it was concluded that there is wide variety of bacteria in Qatar's seawater that can biodegrade the antiscalants; reducing their efficiency to combat membrane scaling. Since, these antiscalants will be used as a source of carbon and energy, microbial growth will increase resulting in enhanced membrane biofouling in SWRO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.