Abstract

This letter presents a closely coupled dual-band multiple-input–multiple-output (MIMO) patch antenna that resonates at 3.7 and 4.1 GHz. The MIMO antenna is composed of two mirror-symmetrical single-feed patch antennas that are closely placed with approximately 0.034 λ0 (where λ0 is the wavelength at 3.7 GHz). The decoupling structure consists of the modified array antenna decoupling surface (MADS) and H-shaped defect ground structures for the lower band and upper band, respectively. Through simulation and measurement, the isolation is determined to be greater than 30 dB in both frequency bands, showing a noticeable improvement compared to the original antenna array. Under the effect of the MADS, the measured gain increases by 2.2 and 0.8 dB at the resonance frequencies of 3.7 and 4.1 GHz, respectively. The measured results indicate that the proposed decoupling structure is quite suitable for closely spaced dual-band MIMO antennas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.