Abstract

This paper introduces a coupling element to enhance the isolation between two closely packed antennas operating at the same frequency band. The proposed structure consists of two antenna elements and a coupling element which is located in between the two antenna elements. The idea is to use field cancellation to enhance isolation by putting a coupling element which artificially creates an additional coupling path between the antenna elements. To validate the idea, a design for a USB dongle MIMO antenna for the 2.4 GHz WLAN band is presented. In this design, the antenna elements are etched on a compact low-cost FR4 PCB board with dimensions of 20times40times1.6 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> . According to our measurement results, we can achieve more than 30 dB isolation between the antenna elements even though the two parallel individual planar inverted F antenna (PIFA) in the design share a solid ground plane with inter-antenna spacing (Center to Center) of less than 0.095 lambda <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> or edge to edge separations of just 3.6 mm (0.0294 lambda <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">o</sub> ). Both simulation and measurement results are used to confirm the antenna isolation and performance. The method can also be applied to different types of antennas such as non-planar antennas. Parametric studies and current distribution for the design are also included to show how to tune the structure and control the isolation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.