Abstract

Soybean inoculation with effective rhizobial strains makes unnecessary the use of N-fertilizers in the tropics. A frequently reported problem is the failure of the inoculant strains to overcome the competition imposed by indigenous rhizobial populations. The screening of indigenous rhizobia, already adapted to local conditions, searching for highly effective strains for use as inoculants represents a promising strategy in overcoming inoculation failure. The objective of this study was to isolate and characterize indigenous rhizobia and to identify strains that hold potential to be included in inoculant formulations for soybean production, with both promiscuous and non-promiscuous soybean cultivars, in Mozambican agro-climatic conditions. A total of 105 isolates obtained from nodules of promiscuous soybean grown at 15 sites were screened for N2-fixation effectiveness in the greenhouse along with five commercial strains. Eighty-seven isolates confirmed the ability to form effective nodules on soybean and were used for genetic characterization by rep-PCR (BOX) and sequencing of the 16S rRNA gene, and also for symbiotic effectiveness. BOX-PCR fingerprinting revealed remarkable genetic diversity, with 41 clusters formed, considering a similarity level of 65%. The 16S rRNA analysis assigned the isolates to the genera Bradyrhizobium (75%) and Agrobacterium/Rhizobium (25%). Great variability in symbiotic effectiveness was detected among the indigenous rhizobia from Mozambique, with ten isolates performing better than the commercial strain B. diazoefficiens USDA 110, the best reference strain, and 51 isolates with lower performance than all reference strains. Thirteen of the best isolates from the first greenhouse trial were evaluated, along with the five commercial strains, in two promiscuous (TGx 1963-3F and TGx 1835-10E) and one non-promiscuous (BRS 284) soybean cultivars in a second greenhouse trial. In general the promiscous soybeans responded better to inoculation. The 13 isolates were also characterized for tolerance to acidity and alkalinity (pH 3.5 and 9.0, respectively), salinity (0.1, 0.3 and 0.5molL-1 of NaCl) and high temperatures (35, 40 and 45°C) in vitro. Five isolates, three (Moz 4, Moz 19 and Moz 22) belonging to the superclade B. elkanii and two (Moz 27 and Moz 61) assigned to the superclade B. japonicum, consistently showed high symbiotic effectiveness, suggesting that the inoculation with indigenous rhizobia adapted to local conditions represents a possible strategy for increasing soybean yields in Mozambique. Phylogenetic position of the five elite isolates was confirmed by the MLSA with four protein-coding housekeeping genes, dnaK, glnII, gyrB and recA.

Highlights

  • Soybean [Glycine max (Linnaeus) Merrill] stands out as the best-bet legume to feed the growing world population, projected to be between 9.6 and 12.3 billion in 2100, with much of the increase expected to happen in Africa (Gerland et al, 2014; UN, 2015)

  • Of the 105 isolates obtained from soybean nodules collected in Mozambique, 18 did not nodulate the non-promiscuous soybean cultivar BRS 133 and, as the objective of the study was to select isolates able to nodulate both promiscuous and non-promiscuous cultivars, they were not considered in the analyses

  • Most (63%) of the Bradyrhizobium isolates clustered within the superclade B. elkanii and the remaining showed genetic relatedness to the superclade B. japonicum

Read more

Summary

Introduction

Soybean [Glycine max (Linnaeus) Merrill] stands out as the best-bet legume to feed the growing world population, projected to be between 9.6 and 12.3 billion in 2100, with much of the increase expected to happen in Africa (Gerland et al, 2014; UN, 2015). Soybean has the ability to reduce atmospheric nitrogen (N2) to a biologically usable ammonia (NH3), in association with bacteria collectively known as rhizobia (Singleton et al, 1992; Giller, 2001), obviating the need for N fertilizers. This is important in Sampling sites Cultivars.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call