Abstract

Three-coordinate main group Lewis acids are exceedingly important reagents in chemical synthesis. In contrast to the well-established chemistries of neutral group 13 and cationic group 14 species, isoelectronic group 15 element dications are unknown. In this work, we use stabilizing N-heterocyclic imine substituents to isolate and characterize phosphorandiylium dications ([R3P]2+) and show that the electrophilicity at the phosphorus atoms is controlled by the π-electron-donating ability of these subtituents. Structural, spectroscopic and theoretical results reveal that the phosphorus dications adopt a perfectly trigonal-planar geometry with the electron-deficient phosphorus centres being well separated from the borate anions. The reactivity of the dications reveal their exceptional Lewis acidity at phosphorus; the adjacent nitrogen atoms, however, are weakly basic, resulting in transformations such as chloride ion abstraction from Me3SiCl and the selective monodefluorination of trifluoromethyl groups.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call