Abstract

Aeromonas hydrophila is a zoonotic pathogen displaying resistance to multiple antibiotics. Here, we aim to develop a candidate biocontrol agent against A. hydrophila. In this study, we isolated and characterized the phage vB-AhyM-AP1 from sewage. It showed lytic activity against A. hydrophila strains. One-step growth curve revealed that the latent period lasted for 40min. The burst size of one lytic cycle was 1413 PFU per infected cell. Temperature stability studies showed that the phage vB-AhyM-AP1 was active over temperatures ranging from 4 to 45°C for 1h. pH stability studies indicated that the phage remained active within a pH range of 5-10 after 24h of incubation. Stability tests in salt solutions showed that the phage was stable at salinities ranging from 0·1 to 2%. The phage also showed stabilities in organic solvents when incubated for 10min. The Illumina Hiseq sequencing of its genome indicated that the phage vB-AhyM-AP1was a jumbo phage with a genome size of 2, 54490bp and GC content of 40·3%. The phylogenetic analysis of the terminase large subunit and major capsid protein indicated that the phage closely clustered with other Tevenvirinae phages. The genome encoded 455 ORFs and 22 tRNAs. The phage resulted in a reduction of 0·8 log units of viable A. hydrophila cells in biofilms grown on PVC coupons maintained in a low nutrient medium for 10days. The phage showed lytic activity against planktonic and biofilm cells of A. hydrophila. Genome-based prediction showed it to be a strictly lytic phage without any virulence or antibiotic resistance genes indicating safety for environmental and clinical applications. The multidrug-resistant strains of A. hydrophila pose a significant health risk to both cultured fishes and consumers leaving few options for treatment. Phage vB-AhyM-AP1 may be used as a candidate biocontrol agent against A. hydrophila strains.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.