Abstract

Previous experiments showed that legumes grown in the presence of living or herbicidally treated quackgrass residues or extracts exhibited reduced seedling root and shoot growth and decreased nodulation and nitrogen fixation. Aqueous extracts of quackgrass shoots were most inhibitory to plant growth. Upon sequential partitioning of an aqueous extract of quackgrass shoots, the ether extract possessed the most activity and caused 50% reductions in radicle elongation of eight crop and weed species at concentrations of less than 240 μg/ml (small-seeded species) and 1000 μg/ml (large-seeded species). Snapbeans (Phaseolus vulgaris L. "Bush Blue Lake") grown aseptically in agar containing an ether extract at 100 and 200 μg/ml exhibited severe root browning, lack of root hair formation, and a two- to three-fold reduction in root and shoot dry weights. The ether extract of quackgrass shoots had no inhibitory effect on the growth of fourRhizobium species in Petri dishes or two species in broth culture. Inhibitors present in the ether extract may influence the legumeRhizobium symbiosis indirectly by reducing legume root growth and root hair formation. The ether extract of quackgrass shoots was separated using high-pressure liquid, thin-layer, and liquid column chromatography in an attempt to isolate and identify the inhibitors responsible for the inhibition of seedling growth. Two closely related flavonoid inhibitors were isolated from the ether extract. One was identified as 5,7,4'-trihydroxy-3',5'-dimethoxyflavone (tricin). Both flavonoids caused 50% inhibition of radicle elongation in cress (Lepidium sativum L. "Burpee curly") seeds at concentrations of less than 125 μg/ml. Both flavonoids were found in ether extracts of quackgrass shoots and rhizomes, but the largest amounts of both compounds occurred in quackgrass shoots collected from the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.