Abstract
A bacteriophage-assisted magnetic separation method was developed for the isolation of Listeria monocytogenes from complex food matrices. The aim of this study is to understand the effect of phage immobilization methods and the magnetic particle sizes on the phage coupling and infectivity retention of the magnetic particles. In this study, bacteriophage P100-modified magnetic particles (PMMPs) were developed for the separation of L. monocytogenes from food matrices. Three sizes of magnetic particles (MP) (150 nm, 500 nm, and 1 μm) were used for phage immobilization via chemical and physical methods. The coupling ratio of phage was investigated, and the performance of each PMMP complex was evaluated by their L. monocytogenes capture efficiency. When compared to the chemical immobilization method, the physically immobilized PMMP complex achieved a higher capture efficiency initially, with excellent selectivity towards target bacteria. The PMMPs were further tested for selective isolation of L. monocytogenes using real food samples such as ground beef and whole milk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.