Abstract

BackgroundForty phosphate solubilizing bacterial (PSB) isolates were isolated from the root zone of wheat plants cultivated in the Delta and the Northwestern coast regions of Egypt. All isolates proofed their ability to dissolve tricalcium phosphate on the National Botanical Research Institute's phosphate growth medium (NBRIP) by producing clear zone and increasing the available phosphorus that ranged between 40 and 707 mg l−1. They were designated as Egyptian native phosphate solubilizing bacteria (ENPSB).ResultsAll strains proofed their ability to dissolve tricalcium phosphate on (NBRIP) medium by producing clear zone and increasing the available phosphorus that ranged between 40 and 707 mg l−1. The ENPSB 1, 2, and 3 strains were highly efficient as they gave 707, 653, and 693 mg l−1 soluble phosphorus respectively. Intriguingly, the two highly efficient strains for phosphate solubilization were isolated from the Northwestern coast alkaline soils. Moreover, 75% of strains were also produced profitable amounts of indole acetic acid (IAA) ranged from 0.79 to 50.5 mg l−1. Amazingly, the most efficient strain ENPSB 1 in solubilizing phosphorus (707 mg l−1soluble P) was the best one for producing IAA (50.5 mg l−1). The three efficient strains were identified using the sequencing of 16S rRNA. Sequence analysis of 16S rRNA for selected strains confirmed that the strains ENPSB 1, 2, and 3 were genetically closed to Enterobacter aerogenes; Pantoea sp. and Enteriobacter sp. respectively.ConclusionThe inoculation by mix cultures of strains (ENPSB 1, 2, and 3) contributed to raising the dry weight and P content of wheat plants by 76% and 12% over the full fertilized plants. Inoculation of soil PSB can be used to solve the deficiency of phosphorus and promote plant growth effectively in calcareous soils.

Highlights

  • Phosphorus (P) is an essential element for plant growth and production

  • Our results indicated that the three efficient strains Egyptian native phosphate solubilizing bacteria (ENPSB) 1, 2, and 3 were increased significantly the soluble P till the sixth day, while after that there was no more significant increase of available phosphorus due to consuming the amount of phosphorus or the depletion of nutrients in the culture, especially carbon source that it is essential for the production of organic acids (Kang et al 2002; Kim and Lei 2005; Chaiharn M, Lumyong 2009), availability of soluble phosphorus in the culture medium may act as an inhibitory effect on further phosphate solubilization and excretory toxic products may responsible for such decline in P-solubilization (Varsha-Narsian et al 1994)

  • Our results indicated that the inoculation with single or mix culture of PSP strains (ENPSB) were contributed to increase the amount of available phosphorus in the soil and this is well in agreement with results obtained by Liu et al (2014) who found that the highest level of available P and the greatest stimulation of plant height and dry weight were obtained in soils coinoculated with the three bacterial strains of phosphate dissolving bacteria

Read more

Summary

Introduction

Nitrogen N2 fixation in legumes, crop quality, and resistance to plant diseases are some of the important attributes associated with P nutrition. It is a major limiting factor for plant growth due to its low availability for root uptake when it presents as rock phosphate. Forty phosphate solubilizing bacterial (PSB) isolates were isolated from the root zone of wheat plants cultivated in the Delta and the Northwestern coast regions of Egypt All isolates proofed their ability to dissolve tricalcium phosphate on the National Botanical Research Institute's phosphate growth medium (NBRIP) by producing clear zone and increasing the available phosphorus that ranged between 40 and 707 mg l−1. They were designated as Egyptian native phosphate solubilizing bacteria (ENPSB)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call