Abstract
Radiocarbon (14C) analysis is a powerful tool that can unambiguously distinguish fossil and non-fossil sources of carbonaceous particles. However, one of the big challenges of this method is to isolate elemental carbon (EC) or black carbon (BC) for 14C analysis. Hydropyrolysis (hypy) has proven to be an effective method for separating BC in environmental matrices. The potential of hypy for isolation of EC from atmospheric aerosols is evaluated using typical combustion products from non-fossil (biomass), fossil fuel (coal and petroleum), and ambient aerosol samples collected in Beijing and Guangzhou. Using solid state nuclear magnetic resonance (NMR) along with measurement of carbon content and 14C, hypy conditions of 15 MPa hydrogen pressure and 550 °C temperature was confirmed to effectively separate EC from aerosol samples. Consequently, a comparison study of EC 14C in aerosol samples separated using the two-step heating method (CTO-375), thermal-optical method and hypy was conducted. The results show that hypy is an effective and stable approach for matrix-independent 14C quantification of EC in aerosols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.