Abstract

Schwann cells are the main glial cells of the peripheral nervous system (PNS) and play key roles in peripheral nerve development and function, including providing myelin that is essential for normal movement and sensation in the adult. Schwann cells can be readily destabilized by a wide variety of distinct conditions that range from nerve injury to immune assaults, metabolic disturbances, microbial infections, or genetic defects, leading to the breakdown of myelin (demyelination) and a subsequent switch in phenotypic states. This striking feature of Schwann cells forms the cornerstone of several debilitating and even fatal PNS neurological disorders that include the demyelinating neuropathies Guillain Barré syndrome (GBS) and Charcot-Marie-Tooth disease (CMT), and PNS cancers, including Neurofibromatosis.Primary Schwann cell cultures have proved a valuable tool to dissect key mechanisms that regulate proliferation, survival, differentiation, and myelination of these glial cell types. In this chapter, we describe the steps involved in the isolation and purification of Schwann cells from rodent peripheral nerves and the use of these cultures to model myelination in vitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.