Abstract

A new and rapid procedure was developed for the isolation of the reaction center core (RCC)-complex from the green sulfur bacterium Prosthecochloris aestuarii. Reaction center preparations containing the Fenna Matthews Olson (FMO) protein were also obtained. The procedure involved incubation of broken cells with the detergents Triton X-100 and SB12, sucrose gradient centrifugation and hydroxyapatite chromatography. Three different pigment protein complexes were obtained: one containing (about) three FMO trimers per RCC, one with one FMO per RCC and one consisting of RCC only. The last one contained polypeptides with apparent molecular masses of 64 kDa (pscA) and 35 kDa (pscB, the FA/FB, FeS subunit), but no cytochrome. Bacteriochlorophyll a and the chlorophyll a isomer functioning as primary electron acceptor were present at a ratio of 4.8:1. The complexes were also characterized spectroscopically and in terms of photochemical activity, at room temperature as well as at cryogenic temperatures. Illumination caused oxidation of the primary donor P840, with the highest activity in the RCC complex (DeltaA840/A810 = 0.06). At room temperature in the RCC complex essentially all of the P840+ produced in a flash was re-reduced slowly in the dark (several seconds). At low temperatures (150-10 K) a triplet was formed in a fraction of the reaction centers, presumably by a reversal of the charge separation, whereas in others P840+ formed in the light was re-reduced in 40-50 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.